Load-based Testing of HVAC Systems

Charlie Stephens
Senior Energy Codes & Standards Engineer

Home Efficiency Forum
October 2018

Canadian Standards Association / CSA Group
Why is this important?

Actual test result

<table>
<thead>
<tr>
<th>Tod</th>
<th>Output</th>
<th>Watts</th>
<th>COP</th>
</tr>
</thead>
<tbody>
<tr>
<td>-17</td>
<td>9435</td>
<td>1827</td>
<td>1.5</td>
</tr>
<tr>
<td>-5</td>
<td>12287</td>
<td>1884</td>
<td>1.9</td>
</tr>
<tr>
<td>5</td>
<td>15030</td>
<td>2160</td>
<td>2.0</td>
</tr>
<tr>
<td>17</td>
<td>15972</td>
<td>2128</td>
<td>2.2</td>
</tr>
<tr>
<td>34</td>
<td>9033</td>
<td>1212</td>
<td>2.2</td>
</tr>
<tr>
<td>47</td>
<td>4021</td>
<td>330</td>
<td>3.6</td>
</tr>
<tr>
<td>54</td>
<td>2307</td>
<td>211</td>
<td>3.2</td>
</tr>
</tbody>
</table>

210/240 values (approx)

<table>
<thead>
<tr>
<th>Tod</th>
<th>Output</th>
<th>Watts</th>
<th>COP</th>
</tr>
</thead>
<tbody>
<tr>
<td>-17</td>
<td>2347</td>
<td>733</td>
<td>0.9</td>
</tr>
<tr>
<td>-5</td>
<td>4007</td>
<td>785</td>
<td>1.8</td>
</tr>
<tr>
<td>5</td>
<td>7040</td>
<td>828</td>
<td>2.5</td>
</tr>
<tr>
<td>17</td>
<td>9600</td>
<td>880</td>
<td>3.2</td>
</tr>
<tr>
<td>34</td>
<td>13227</td>
<td>954</td>
<td>4.1</td>
</tr>
<tr>
<td>47</td>
<td>16000</td>
<td>1010</td>
<td>4.6</td>
</tr>
<tr>
<td>54</td>
<td>17493</td>
<td>1040</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Projected Usage in kWh vs Previous Period

- This Month
- Last Month
- To date: 68 kWh
- To same day, last month: 90 kWh

Ducted Minisplit, Minute by Minute View for Today

- Yesterday's Usage
- Yesterday's Bedroom #3
- Yesterday's Master Bedroom
- Yesterday's Office
- Yesterday's Bedroom #2
- Yesterday's Master Bath
- Usage
- Bedroom #3
- Master Bedroom
- Office
- Bedroom #2
- Master Bath
- Yesterday's Outdoor Temperature
- Outdoor Temperature

Click and drag in the plot area to zoom in.
Why is this important?
Why is this important?
Why is this important?
Why is this important?

Actual test result

<table>
<thead>
<tr>
<th>Tod</th>
<th>Output</th>
<th>Watts</th>
<th>COP</th>
</tr>
</thead>
<tbody>
<tr>
<td>-17</td>
<td>9435</td>
<td>1827</td>
<td>1.5</td>
</tr>
<tr>
<td>-5</td>
<td>12287</td>
<td>1884</td>
<td>1.9</td>
</tr>
<tr>
<td>5</td>
<td>15030</td>
<td>2160</td>
<td>2.0</td>
</tr>
<tr>
<td>17</td>
<td>15972</td>
<td>2128</td>
<td>2.2</td>
</tr>
<tr>
<td>34</td>
<td>9033</td>
<td>1212</td>
<td>2.2</td>
</tr>
<tr>
<td>47</td>
<td>4021</td>
<td>330</td>
<td>3.6</td>
</tr>
<tr>
<td>54</td>
<td>2307</td>
<td>211</td>
<td>3.2</td>
</tr>
</tbody>
</table>

210/240 values (approx)

<table>
<thead>
<tr>
<th>Tod</th>
<th>Output</th>
<th>Watts</th>
<th>COP</th>
</tr>
</thead>
<tbody>
<tr>
<td>-17</td>
<td>2347</td>
<td>733</td>
<td>0.9</td>
</tr>
<tr>
<td>-5</td>
<td>4907</td>
<td>785</td>
<td>1.8</td>
</tr>
<tr>
<td>5</td>
<td>7040</td>
<td>828</td>
<td>2.5</td>
</tr>
<tr>
<td>17</td>
<td>9600</td>
<td>880</td>
<td>3.2</td>
</tr>
<tr>
<td>34</td>
<td>13227</td>
<td>954</td>
<td>4.1</td>
</tr>
<tr>
<td>47</td>
<td>16000</td>
<td>1010</td>
<td>4.6</td>
</tr>
<tr>
<td>54</td>
<td>17493</td>
<td>1040</td>
<td>4.9</td>
</tr>
</tbody>
</table>

![Ducted Minisplit, Minute by Minute View for Today](image)

![Average COP vs Ambient Temperature](image)
Harley Residence Heat Pump
Before and after firmware adjustment
An example of why this matters
Conventional DOE/AHRI Testing

- Fixed fan and compressor speeds
 - High fan speeds used in test aren’t available in normal operation
 - Boosts rated efficiencies
- Doesn’t include low-load cycling behavior
- Manufacturer’s reps install equipment and monitor testing using proprietary test modes
 - Can’t be independently duplicated
- Rating extrapolates performance over a wide range of conditions from two test points (with some adjustments)
Stakeholder Needs - Accuracy

- Climate-specific ratings
 - Seasonal heating and cooling performance
- Include standby energy
 - Can be significant during shoulder seasons
- DOE ratings (HSPF/SEER) not consistently representative of actual performance
 - Based on **two data points** (with adjustments), in **one climate**
 - **Savings** based on HSPF **not predictive**
 - Meaningful **performance comparisons impossible**
 - Leads to **modeling inaccuracies**
EXP-07 Development Objectives

- Respond to stakeholder needs:
 - Realistic rating, especially for variable speed systems
 - Seasonal efficiency (heating & cooling) reported for a range of climate zones
 - Detailed data for hourly computer simulation

- Voluntary – not intended as regulation
 - Marketplace differentiation of high-performance products
 - Qualified product lists for market support
Scope

- Single-stage, multi-stage, and variable speed heat pumps and air conditioners
- Residential equipment sizes (<65,000 Btu/hr)
- Ducted/ductless (including central ducted)
- Air-to-air, single-zone
 - Multi-zone and air-to-water planned
- Use dynamic, load based testing rather than lab-induced fixed-speed and fixed-condition, tested under the system’s own controls, as shipped
Task Group

- Working group convened by CSA in 2015
 - Project manager: Jovan Cheema
- Comprised of:
 - Canadian utilities (Chair: Gary Hamer – BC Hydro)
 - Natural Resources Canada (NRCan) / CanMetEnergy
 - Northwest Energy Efficiency Alliance (NEEA)
 - Pacific Gas and Electric (PG&E)
 - Electric Power Research Institute (EPRI)
- Tasked to develop a CSA “Express Document”
 - Not full ANSI process, but similar – standards language
The New Procedures

- Dynamic, load-based testing
- Tested under system’s own controls
- Data reported for all test condition intervals
- 4 sets of tests – 2 for cooling, 2 for heating
- Ratings in 8 climate zones
- Bin hours for weighting not the same as DOE’s
- Application ratings to be included
Extensive Lab Work Involved
Conventional Test Method

Degree F

kBtu/hr
Dynamic Test Method

![Graph showing dynamic test method data. The x-axis represents degrees Fahrenheit (°F) while the y-axis represents kBtu/hr. The graph includes multiple lines and markers indicating test points, max capacity, and COP @Tj.]
Dynamic Load-based Testing

- Indoor room has simulated loads
 - Load is “imposed” by indoor room reconditioning equipment, programmed to mimic load
 - Load varies based on outdoor conditions
 - *Includes dynamic moisture load for humid/cooling*
 - Equipment under test: on-board thermostat/controls govern system operation as normally installed
- Includes native fan, cycling, defrost and latent removal in a single test procedure
- Tested as shipped
Data Reported

Test and report data under a wide range of outdoor conditions and building loads:

- **Cooling:** 5 outdoor room temperatures
 - From 77°F to 113°F (DOE test: 82 & 95)

- **Heating:** 6 outdoor room temperatures
 - From 54°F to -10°F (DOE test: 17 & 47)

- **Report consistent performance data**
 - Can be used in hourly building simulations or design
Test Conditions

Cooling

<table>
<thead>
<tr>
<th></th>
<th>Humid Test Conditions</th>
<th>Dry Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Outdoor Dry-Bulb</td>
<td>Indoor Dry-Bulb</td>
</tr>
<tr>
<td></td>
<td>Temperature, °F</td>
<td>Temperature, °F</td>
</tr>
<tr>
<td>CA¹</td>
<td>N/A</td>
<td>74</td>
</tr>
<tr>
<td>CB</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>95</td>
<td>74</td>
</tr>
<tr>
<td>CD</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>77</td>
<td></td>
</tr>
</tbody>
</table>

Heating

<table>
<thead>
<tr>
<th></th>
<th>Standard Outdoor Conditions</th>
<th>Marine Outdoor Conditions</th>
<th>Indoor Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry-Bulb Temperature, °F</td>
<td>Wet-Bulb Temperature, °F</td>
<td>Dry-Bulb Temperature, °F</td>
</tr>
<tr>
<td>HA¹</td>
<td>-10</td>
<td>-11.4</td>
<td></td>
</tr>
<tr>
<td>HB¹</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>HC</td>
<td>17</td>
<td>14.5</td>
<td>17</td>
</tr>
<tr>
<td>HD</td>
<td>34</td>
<td>31</td>
<td>34</td>
</tr>
<tr>
<td>HE</td>
<td>47</td>
<td>41</td>
<td>47</td>
</tr>
<tr>
<td>HF</td>
<td>54</td>
<td>45</td>
<td>54</td>
</tr>
<tr>
<td>HL¹,²</td>
<td>TOL</td>
<td>TOL-1</td>
<td>TOL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CA1: N/A

CB: 104

CC: 95

CD: 86

CE: 77

HA1: -10

HB1: 5

HC: 17

HD: 34

HE: 47

HF: 54

HL¹,²: TOL

TOL: 70

TOL-1: 60 (maximum)
Typical Cooling Test Profile
Performance Data Comparison

- Test COPs match manufacturer engineering data fairly well
 - AHRI shown for illustration purposes (From published values at 17/47; not including defrost, C_d)
Climate-based Ratings

- 8 North American climate zones
- Based on (simplified) Building America zones
 - Using a grouping analysis by Ecotope
- Test results used to create bin model for annual performance for each climate
 - Seasonal COPs for heating/cooling in each climate
- With and without standby, crankcase, pan heater
Proposed Climate Zones

- Subarctic
- Very-Cold
- Cold-Dry
- Cold-Humid
- Marine
- Mixed-Humid
- Hot-Dry
- Hot-Humid
Two Sets of Heating & Cooling Tests

<table>
<thead>
<tr>
<th>Rating Climate</th>
<th>Heating</th>
<th>Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-Arctic</td>
<td>Standard</td>
<td>N / A</td>
</tr>
<tr>
<td>Very Cold</td>
<td>Standard</td>
<td>Humid</td>
</tr>
<tr>
<td>Cold / Dry</td>
<td>Standard</td>
<td>Dry</td>
</tr>
<tr>
<td>Cold / Humid</td>
<td>Standard</td>
<td>Humid</td>
</tr>
<tr>
<td>Marine</td>
<td>Marine</td>
<td>Dry</td>
</tr>
<tr>
<td>Mixed</td>
<td>Standard</td>
<td>Humid</td>
</tr>
<tr>
<td>Hot / Humid</td>
<td>Standard</td>
<td>Humid</td>
</tr>
<tr>
<td>Hot / Dry</td>
<td>Standard</td>
<td>Dry</td>
</tr>
</tbody>
</table>
AHRI / DOE Bin Hours (Table 17, p.99)

Note dip in rating zone hours between 32 & 47 F (Zones IV & V – only)
EXP-07 Heating Bin Hours

CSA algorithm eliminates a significant number of “heating” hours above 47 F
EXP-07 Cooling Bin Hours - 6 Climates

CSA algorithm eliminates a significant number of “cooling” hours below 73F
Application Ratings

- Use the same set of lab test data as standardized ratings
- Customizable to specific building types and climates
 - In a way that is consistent with standard ratings
- Includes guidance for realistic use of auxiliary heating (e.g., boiler or electric resistance)
Progress / Next Steps

Lab testing so far:

- PG&E
- Purdue
- NRCan/ CanMetEnergy
 - NGTC
 - UL Plano
- EPRI
- SCE starting

- Many partial; details have varied over time
- Some focused on answering research questions (e.g., simulated loads, repeatability)
Time Line

- Public comments closed December 2017
- Lab testing will continue
 - Several key issues resolved since last winter
 - Controller apparatus & set-up - Purdue to finish summer 2018
- Stable version by fall 2018, for more lab testing and technical feedback
- Publish in late 2018 or early 2019
- Work starting on air-to-water, and multi-split (residential “VRF”) system types
Interested Parties

- Canadian Utilities
- Natural Resources Canada
- Some NE Utilities / State agencies / NEEP
- Northwest Utilities / NEEA
- CA Utilities (PG&E, SCE at least)
- Some cities – decarbonization efforts
Contacts

◦ Bruce Harley
 Bruce Harley Energy Consulting
 Stamford, VT
 bruce@bruceharleyenergy.com
 802-694-1719

◦ Charlie Stephens
 Northwest Energy Efficiency Alliance
 Portland OR
 cstephens@neea.org
 503 688-5457

◦ Gary Hamer (Chair)
 BC Hydro
 Vancouver, BC
 gary.hamer@bchydro.com
 604 453-6388