Indoor Air Quality and HVAC design strategies for high performance homes

> Greg Davenport and Lucas Howard

Panasonic

COOLING & HEATING

Panasonic

Indoor Air Quality Specialist

Energy WSU Energy Program Program Building Eff

Renewable Energy

Publications and Tools Energy Library

Events & Trainings

I'm Looking For...?

Building Efficiency

2012 Energy Code

Community EE Program Clean Fuels & Alt Energy

Previous Codes

Public Facilities Support

Computer Services Industrial Efficiency

Agricultural Efficiency Research & Evaluation

Search Energy Program

G

PANASON

AC

System Incentive Program

Energy Code Energy Questions?

Home

About Us Information Centers

Building Efficiency

2015 Washington State Energy Code

For 2012 Residential Energy Code information and forms click here.

Our code experts provide support to those who use the **residential sections** of the Washington State Energy Code (WSEC). The 2015 code went into effect July 1, 2016 (visit the <u>Washington State Building Code Council website</u> @ for updates).

Have questions about the residential code?

Email <u>energycode@energy.wsu.edu</u> or call the WSEC Residential Code Hotline at 360-956-2042. Other resources to help you include:

Energy Code Worksheets

Energy Code

<u>Listserv</u> Code Text

Compliance Publications & Tools

<u>Solar</u>

Scheduled Trainings

List of Duct Testers

List of Home Energy Raters (HERS)

Presentations & Videos

Hot Topics

NAILSIRI WILL G CHPAIN

For non-residential code resources, contact the <u>Northwest Energy Efficiency</u> <u>Council</u> Ø.

Energy Code Worksheets

d of being group e, and Heating J have trouble using

Who are you?

Habe vor Berghenerger and the state of the s

Part 1 What you don't see can kill you

time talking spend Whv ore m ders (\mathbf{e}) A P falatatiense

Study Links Polluted Air in China to 1.6 Million Deaths a Year

点击查看本文中文版 Read in Chinese

By DAN LEVIN AUG. 13, 2015

BEIJING — Outdoor air pollution contributes to the deaths of an estimated 1.6 million people in <u>China</u> every year, or about 4,400 people a day, according to <u>a newly released scientific paper</u>.

A ferry makes its way through smoke from wildfires in British Columbia covering Seattle on Wednesday, Aug. 2, 2017.

Image Credit: istockphoto.com/joske038

Global Health Observatory (GHO) data

Mortality from household air pollution

Situation and trends

In 2012, household air pollution was responsible for 4.3 million deaths, and 7.7% of the global mortality

439 People per year in the US die from non fire related CO

COMBUSTION RISKS THAT MAY AFFECT IAQ

- Gas Heating
- Gas Hot Water
- Gas cooking
- ➢Gas fireplaces/BBQs
- >Automobile exhaust in garage or near windows
- Forest fires
- >Wood/pellet stoves
- Depressurization
- Also hobbies and workshops can cause risks

For decades, no one worried much about the air quality inside people's homes unless there was secondhand smoke or radon present. Then scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) made the discovery that the aggregate health consequences of poor indoor air quality are as significant as those from all traffic accidents or infectious diseases in the United States. One major source of indoor pollutants in the home is cooking.

Berkeley Lab, EPA Studies Confirm Large Public Health And Economic Impact of Dampness and Mold: *They estimate that number of asthma cases attributable to exposure in home is 4.6 million, at \$3.5 billion annual cost*

Contact: Allan Chen, (510) 486-4210, a_chen@lbl.gov

HIDDEN MOLD

Mold growing on the back side of wallpaper.

WHAT IS RH AND WHERE CAN I GET SOME?

 Relative humidity (RH) is the ratio of the amount of water vapor in the air at a specific temperature to the maximum amount that the air could hold at that temperature,

expressed as a percentage

Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments

Joseph G. Allen,¹ Piers MacNaughton,¹ Usha Satish,² Suresh Santanam,³ Jose Vallarino,¹ and John D. Spengler¹

¹Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; ²Psychiatry and Behavioral Sciences, SUNY-Upstate Medical School, Syracuse, New York, USA; ³Industrial Assessment Center, Center of Excellence, Syracuse University, Syracuse, New York, USA

BACKGROUND: The indoor built environment plays a critical role in our overall well-being because of both the amount of time we spend indoors (~90%) and the ability of buildings to positively or negatively influence our health. The advent of sustainable design or green building strategies reinvigorated questions regarding the specific factors in buildings that lead to optimized conditions for health and productivity.

RESULTS: On average, cognitive scores were 61% higher on the Green building day and 101% higher on the two Green+ building days than on the Conventional building day (p < 0.0001). VOCs and CO₂ were independently associated with cognitive scores.

CONCLUSIONS: Cognitive function scores were significantly better under Green+ building conditions than in the Conventional building conditions for all nine functional domains. These findings have wide-ranging implications because this study was designed to reflect conditions that are commonly encountered every day in many indoor environments.

Indoor Environmental Quality (IEQ)

Priorities

- Indoor Air Quality (IAQ)
 - Minimal pollutants
 - Odor Free
- Comfortable
 - Temperature
 - Relative Humidity
 - Draft Free
 - Quiet
 - Effective lighting
 - Aesthetically pleasing

Household IAQ Risks

Toxiq-building materials Butdoor MOCINE and Fight Holdshide uality or Bepressurization and Fight Holds Ventuality or forest fires

Pollutants Defined

- VOC's = Volatile Organic Compounds
- Mold
- PM = Particle Matter
 - Generally measured in micrometers
- PM2.5 = Particle matter 2.5 micrometers or less
 - Pollutant of most concern in the average home
- Ultra fine particles = Particle matter 1.0 micrometers or less
- Small enough to be absorbed by organs and the blood steam

Women who work within the home have a 54% higher death rate from cancer than those that work outside the home.

International Conference on Indoor Air Quality and Climate, Toronto, 1990.

Numerous indoor air pollutants have been directly tied to causing or increasing the risk of asthma developing in children

Graphic data coutesy of the National Center for Biotechnology Information https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266016/

Cooking on both gas and electric burners produces fine and ultrafine particles. These particles are small enough to enter the lungs, bloodstream and other organs.

Fine particles = 1.0 – 2.5 micrometers Ultrafine particles < 1.0 micrometers

Original Articles

Development of a standard capture efficiency test method for residential kitchen ventilation

Yang-Seon Kim S. Valker & William W. Delp Pages 176-187 | Received 17 Apr 2017, Accepted 06 Dec 2017, Accepted author version posted online: 02 Jan 2018, Published online: 05 Jan 2018

Recent research by LBL estimate that 10's of millions of Californians cooking with gas stoves are **routinely exposed to pollutant levels that exceed federal standards for outdoor air.**

C:\Users\lh65488\Documents\Educational Materials\IAQ Ventilation Research\Pollution in the Home Kitchens Can Produce Hazardous Levels of Indoor Pollutants Berkeley Lab.mht

VOC levels were \sim 20 times higher indoors

EPA- indoor air quality 2x-5x more toxic than outdoor air

Low toxic ity building materials improve indoor air quality and health

Part 2

HVAC Design for High Performance Homes

Smart HVAC Design

Design it right and prevent comfort problems

Do a Manual D and Manual T calculation every time if you have ducts Do a form Dy Provide States ASTIPOS of the Main Factor (Manual J) Check your turndown ratio to ensure good shoulded season performance Consider using well designed airshare or transfer system when possible Oversized ASHPs will have poor energy performance and comfort performance Design a good ventilation system for improved comfort, health, and energy efficiency

What do ducts really do?

Distribute hebtigssandlagediag ductless neathpung system

Improve Comfort, IAQ, and health

Ductwork for Space Conditioning

Horizontal Ducted Systems

Passive Home Project

Boise, Idaho

Affordable Home Builder

Rhvac - Residential & Light Commercial HVAC Loads

Elite Software Development Flourish

Project Report

Design Data							
Reference City:	Boise AP,	Boise AP, Idaho					
Building Orientation:		Front door faces Southwest					
Daily Temperature Range:			High				
Latitude:			43 Degrees				
Elevation:		2838 ft.					
Altitude Factor:		0.9	0.902				
Elevation Sensible Adj. Factor:		0.9					
Elevation Total Adj. Factor:		0.9					
Elevation Heating Adj	0.9	60					
	Outdoor	Outdoor	Outdoor	Indoor	Indoor	Grains	
	Dry Bulb	Wet Bulb	Rel.Hum	Rel.Hum	Dry Bulb	Difference	
Winter:	3	1	n/a	n/a	70	n/a	
Summer:	95	64	18%	30%	75	7	
(
Check Figures							
Total Building Supply CFM:		931		CFM F	Per Square ft		0.725
Square ft. of Room Area:			1,284	Squar	eft. Per Ion		1,093
Volume (ft ³):		1	1,074				
Building Loads	··· · ··			<u> </u>			
Total Heating Required Including Ventilation		Ventilation Air	11,75	3 Btuh	11.753	MBH (Based C	On 0.960 Derating)
Total Sensible Gain:			9,94	1 Btuh	88	%	
Total Latent Gain:	al des als salita as i	\ /	1,36	3 Btun	12	% Tana (Daaada	
lotal Cooling Required Including Ventilation Air:			: 11,30	11,304 Bitun 0.94 Tons (Based On Sensible +			On Sensible + Latent)
					1.17	Consoitu)	Jn 77% Sensible
				(and 0.916 Sensible Derating)			nsible Derating)
						(and 0.910 Se	risible Defatility)
Notes							
Rhvac is an ACCA approved Manual J and Manual D computer program.							

Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

All computed results are estimates as building use and weather may vary.

Manual J

Room by room heating and cooling load calculation

Be sure to correctly account for

Air infiltration

Ventilation heating and cooling load

Latent removal when needed

	P	roject Inform	nation				
For: Oal	k Harbor, Greens	stone Homes	lation				
	D	esign Inform	ation				
	Htg	Clg		Infiltration			
Outside db (°F) Inside db (°F)	4 70	96 Method 75 Constru	l uction quality	1	3implified Semi-tight		
Design TD (°F)	66	21 Firepla	ces		1 (Semi-tig		
Daily range	-	M					
Inside humidity (%) Moisture difference (gr/lb)	30	30					
moistare amerenae (gria)							
HEATING EQ	UIPMENT		COOL	ING EQUIPMEI	NT		
Make Trade		Mak	(e de				
Model		Con	nd				
AHRI ref		Coil	Plicof				
Efficiency	80 AFUE	Effic	ciency	0 SEER			
Heating input	0 Btu	h Sen	sible cooling	0 Btuh			
Heating output	0 Btu	h Late	ent cooling		0 Btuh		
Actual air flow	467 cfm	Actu	ual air flow	4	487 cfm		
Air flow factor	0.025 cfm	/Btuh Air f	flow factor	0.050 cfm/Btuh			
Static pressure	0 in H	I2O Stat	tic pressure d consible boot ratio	0 in H2O at ratio 0.90			
		200					
ROOM NAME	Area	Htg load	Clg load	Htg AVF	Clg AVF		
	(ff*)	(Btuh)	(Btuh)	(cfm)	(cfm)		
Mst Bath	62	1209	323	31	16		
Laundry	44	569	147	14	7		
Master Bed Rod 2	179	2102	800	53	40		
Bath	51	637	111	16	6		
Bed 2	133	3249	1066	82	53		
Open Living Garage	518	8998	6177	227	306		
Garage				0			
Calcula	ations approved	by ACCA to meet al	I requirements of Ma	anual J 8th Ed.			
🙈 🖶 wrightsoft' Right-S	uite® Universal 2017	17.0.19 RSU24177			2017-Mar-16 15:50: Pape		
	ist House.rup Calc = M	U8 Front Door faces: 8					
Entire House	1738	18472	9422	487	487		
Other equip loads		3007	2667				
Equip.@ 1.01 RSM			12234				
Latent cooling			1341		l		
TOTALC	1738	21479	13575	467	i 467		
TOTALS							
an and a second	(marine)		11	1 22	- 1		

Why is there a U turn in this ductwork?

Audience Question #3 First to Vaise in more energy efficient? Ducts in conditioned space or Insulated ducts running outside of conditioned space

Manual D – Duct design

All ventilation ducted work and the property designed

Systems and Applications 1 Blowers and Air-side Devices 1 Sizing Calculators 1 Efficiency, Leakage and No

INPUTS & DATA REQUIRED TO PERFORM A MANUAL D

Total External Static Pressure (ESP)

Do not drill near electric heat strips. Find heat strip pressure drop in the manufacturer's engineering data and add the pressure drop to the measured total external static pressure for the highest accuracy.

MANUAL T – AIR TERMINAL DEVICE SELECTION

Manual T: Air Distribution Basics

 Room by room load data is used to select air terminal devices.

Air Terminal Device Selection

Manual T: Air Terminal Devices

 Use manufacture data to select based on:

Size

Btuh capacity

CFM

- Pressure drop
- Velocity

Throw

Spread.

NOMINAL	FREE	Heating BTU/h	3045	4565	6090	7610	9515
SIZE SQ. IN.		Cooling BTU/h	855	1280	1710	2135	2670
		C.F.M.	40	60	80	100	125
		T.P. Loss	.009	.015	.027	.037	.050
2¼ ″ x 12″	21 24	Vert. Throw (ft.)	3	4	5	6	8
		Vert. Spread (ft.)	6	8	10	11	14
1.1.1		Face Velocity	280	420	565	705	880
		T.P. Loss	.006	.010	.021	.031	.042
2¼″ x 14″		Vert. Throw (ft.)	3	4	4.5	5.5	8
		Vert. Spread (ft.)	6	8	9	11	14
		Face Velocity	245	365	490	.037 6 11 705 .031 5.5 11 610 .026 5 9	760
4" x 10"	32	T.P. Loss		.008	.021	.026	.032
		Vert. Throw (ft.)		3	4	5	7
		Vert. Spread (ft.)		6	8	9	12
		Face Velocity		265	355	445	555
MANUAL D LOAD SOFTWARE

MANUAL D – SUPPLEMENTAL TOOLS DUCTULATOR

What is in your ductwork?

DUMB DUCT DESIGN

RANGE HOOD CAPTURE EFFICIENCY - ASTM E3087-17

Smart Duct Design

- Use a good duct design tool
- Ducts should be as straight as possible
- Soft turns over hard turns
- Make sure your static pressure matches your ductwork
- Use dampers and good duct terminations
- Air needs a return path in order to move through the home
- Use stack effect to your advantage for heating and cooling

DUCT INSIDE THE ENVELOPE! LESS DUCT - SOFFITS

DUCT INSIDE THE ENVELOPE! PLENUM TRUSS DESIGN AND OPEN WEB TRUSS

PLENUM TRUSS DESIGN TRUSS CHASE AND COMPACT DUCT DESIGN

COMPACT DUCT DESIGN

compact register design directs airflow to hug the ceiling plane compact traditional

Compact duct design

BURIED DUCTS – YES OR NO?

- Be careful! A problem with buried ducts is condensation on the outside of the duct insulation, especially in hot, humid climates during the cooling season.
- Buried ducts must be well sealed and insulated
- Encapsulating the attic ducts in closed-cell spray foam insulation will help overcome condensation.
- Use caution if considering buried ducts.

Performance Construction Roundtable

Dupont Load Calculation

Project Repo	ort							
General Project In	formation	1						
Project Title:	Ha	batit For Hum	anity					
Designed By:	Be	nny Etter						
Project Date: Wednesday, March 16, 2016								
Client Name:	Ha	batit For Hum	anity					
Client Address:	34	1 Walnut St						
Client City: Rock Hill SC								
Company Name:	Air	tek Of York C	ounty					
Company Represe								
Company Address	: 23							
Company City:	Ro	ck Hill SC 297	704					
Design Data								
Reference City:			Rock H	II. South Care	olina			
Building Orientatio	Front do	Front door faces North						
Daily Temperature	Range:		Medium					
Latitude:	-		34 Degrees					
Elevation:			470 ft.	5				
Altitude Factor:		0.9	983					
Elevation Sensible Adj. Factor:		1.0						
Elevation Total Adj	- Factor:	1.0	000					
Elevation Heating Adj. Factor:		1.000						
Elevation Heating	Adj. Factor:	1.0	000					
	Outdoor	Outdoor	Outdoor	Indoor	Indoor	Grains		
	Dry Bulb	Wet Bulb	Rel Hum	Rel Hum	Dry Bulb	Difference		
Winter:	23	21.39	80%	n/a	70	n/a		
Summer:	94	74	40%	50%	75	31		
Check Figures	The second second							
Total Building Supply CFM:		708 CFM Per Source		er Square B	0	0.603		
Square ft. of Room Area:			1,195	Square	ft. Per Ton	4	821	
/olume (ft ^a) of Cond. Space:		9,600		advargant of 1011			021	
uilding Loads								
otal Heating Requ	aired Including	Ventilation Air	: 15,8	302 Btuh	15.802	MBH		
Total Sensible Gain;			15,3	315 Bluh	88	%		
Total Latent Gain:			2,1	53 Btuh	12	%		
Total Cooling Required Including Ventilation Air.			17.4	68 Btuh	1.46	Tons (Based On Se	ensible + Latent)	

Mitsubishi Equipment Selection

- 9,000 Btu MSZ for Great Room
- 9,000 Btu SEZ for Bedrooms

sample image for reference

York County Habitat - Dupont Plan

Construction Site Tour

Mitsubishi System Design

SEZ in Dropped Hallway Chase

SEZ with filter box

Indoor Units

ERV/HRV Rough-In

Construction Site Tour

Construction Site Tour

High performance shell

Energy efficient heating and cooling

Room by room heating and cooling load calculation Manual J

Heating load 21,479 BTU

Cooling load 13,875 BTU

Bedroom 3 only 1,709 BTU

Load Entire	Job: Date: By:	Oak Harbor Crawl March 16th, 2017 Lou Bragg			
	P	roject Inform	nation		
For: Oak	Harbor, Greens	stone Homes			
	D	esign Inform	ation		
Outside db (°F) Inside db (°F) Design TD (*F) Daily range Inside humidity (%) Moisture difference (gr/lb)	Htg 4 70 66 30 30	Clg 96 Method 75 Constru 21 Fireplau M 30 11	l uction quality ces	Infiltration	Simplified Semi-tight 1 (Semi-tigh
HEATING EQ	UIPMENT		COOL	ING EQUIPME	NT
Make Trade Model AHRI ref Efficiency Heating output Temperature rise Actual air flow Actual air flow Actual air flow Actor Static pressure Space thermostat	80 AFUE 0 Btu 0 Btu 0 °F 487 °fm 0.025 cfm 0 in H	Mah Trav Coi AHF h Sen h Late Totz Att 20 Stat 120 Loa	e de RI ref Siency sible cooling ant cooling at cooling at cooling blow factor flow factor fic pressure d sensible heat ratio	0 SEER 0 Btuh 0 Btuh 487 cfm 0.050 cfm/Buh 0 in H2O 0 0.90	
ROOM NAME	Area (ff ^e)	Htg load (Btuh)	Clg load (Btuh)	Htg AVF (cfm)	Clg AVF (cfm)
Mst Bath Laundry Master Ped Bed 3 Bath Bed 2 Open Living Garage	62 44 179 153 51 133 518 599	1209 569 2102 1709 637 3249 8998 0	323 147 800 797 111 1066 6177 0	31 14 53 43 16 82 227 0	18 7 40 6 53 308 0
Calcula	tions approved sket Universal 2017 st House.rup Calc = N	by ACCA to meet all 17.0.19 RSU24177 UB Front Door faces: S	l requirements of M	anual J 8th Ed.	2017-Mar-16 15:50:2 Page
Entire House Other equip loads Equip. @ 1.01 RSM Latent cooling	1738	18472 3007	9422 2667 12234 1341	467	467
TOTALS	1738	i 21479	i 13575	i 467	i 467

High performance Fresh Air system

Heat recovery whole home ventilation fan plus whole home filter for healthy indoor air quality

INDOOR AIR QUALITY AND VENTILATION BEST PRACTICES

Keep Sup elyeft is and of the side of this for pace Always This Kologe is the provised of the structure Monitorie of the second structure of the second seco

Natural Ventilation

Driving Force = Pressure difference (ΔP)

Temperature difference
Stack effect
Wind

Stack Effect

positive pressure

egative pressu

Neutral Pressure Plane

ΔP varies seasonally

Natural Ventilation

The stack effect is caused by the relative buoyancy of warmer air. Warmer air's upward force exerts an outward pressure. Airflow, through holes in the home's top, creates suction at lower levels, pulling air in. Arrows indicate the direction and intensity of air pressure.

Air out = Air in

Natural Ventilation?

National Parks/Monuments Tribal Boundaries

The tribal boundaries shown here are provided by the Bureau of Indian Affairs and are intended to be used as a general spatial reference only. They are not a formal determination of tribal boundaries by the EPA.

Outside "Fresh" Air

Attached garage air

ASHRAE 62.2

Build tight

Most states now mandate local and whole house mechanical ventilation by code.

Washington State Ventilation and Indoor Air Quality Code

Ventilation for Acceptable Indoor Air Quality

at An Constitution (Inginatory, Inc.

Ventilate right

Common Whole House Ventilation System Types

Supply Integrated with

Central Forced Air

Exhaust Only

WHOLE HOUSE VENTILATION SYSTEM EFFECTIVENESS

Exhaust Only Systems

LOCAL EXHAUST VENTILATION

Baths* 50 cfm intermittent •80 cfm in Oregon •20 cfm continuous

Condensation sensor on fan?

Kitchens

100 cfm intermittent
25 cfm continuous
Systems over 400cfm must provide makeup air

*some states require local exhaust in utility/laundry rooms
AVOIDING DEPRESSURIZATION

SOURCES OF NEGATIVE PRESSURE IN A HOME ARE

Range hoods Exhaust fans Dryers Central Vacuum Bad HVAC system design In the US, the construction industry has long recognized the need for adequate makeup air for exhaust systems. Beginning in 2009 and in every version since, the International Residential Code (IRC) has required that makeup air be provided for kitchen hood exhaust systems with capacity of 400 cfm or greater.

Make Up Air

When an exhaust fan operates without sufficient makeup air, some undesirable results can occur:

The exhaust system will not work to its intended capacity

Kitchen hood exhaust systems are sized to remove cooking-generated heat, odors and contaminants based on the cooking equipment's dimensions and heat rating. Inadequate makeup air can prevent a kitchen hood exhaust system from adequately removing contaminants.

Backdrafting of chimneys and appliance vents

Insufficient makeup air will result in depressurization in the home. Depressurization works to halt the flow of hearth and appliance combustion products from exiting the home. This "backdrafting" can result in a dangerous accumulation of harmful gases in the home. Studies by the Building Performance Institute (BPI) and Residential Energy Services Network (RESNET) have shown that as little as **5 Pa** (0.02" w.g.) depressurization can cause backdrafting.

WHOLE HOUSE MECHANICAL VENTILATION

Anto Michael Standard City 2017 Angeweine State State State State State Angeweine State St

Ventilation for Acceptable Indoor Air Quality

Inclusion in a single limit of the limit of

the second se

and the second

American Society of Hausing Refegencing and Air Conditioning Engineers, Inc. 74 feet time of Association of Ministry of

WHOLE HOUSE MECHANICAL VENTILATION INTERMITTENT OPERATION

DWELLING UNIT	NUMBER OF BEDROOMS						
FLOOR AREA	0 - 1	2 - 3	4 - 5	6 - 7	> 7		
(square feet)	Airflow in CFM						
< 1,500	30	45	60	75	90		
1,501 - 3,000	45	60	75	90	105		
3,001 - 4,500	60	75	90	105	120		
4,501 - 6,000	75	90	105	120	135		
6,001 - 7,500	90	105	120	135	150		
> 7,500	105	120	135	150	165		

For SI: 1 square foot = 0.0929 m², 1 cubic foot per minute = 0.0004719 m³/s.

Table M1507.3.3(2)

Intermittent Whole-House Mechanical Ventilation Rate Factors^{a, b}

Run-Time Percentage in Each 4-Hour Segment	25%	33%	50%	66%	75%	100%
Factor ^a	4	3	2	1.5	1.3	1.0

a For ventilation system run time values between those given, the factors are permitted to be determined by interpolation.

b Extrapolation beyond the table is prohibited.

AND NOTATION AND ADDRESS OF A DESCRIPTION OF A DESCRIPTIO

> American Sectory of Hauting Berlegeneting and Air Conditioning Engineers, Inc. 179 Note that All American Articles

WHOLE HOUSE MECHANICAL VENTILATION CONTINUOUS OPERATION

2013

VENTILATION RATES FOR ALL GROUP R
PRIVATE DWELLINGS, SINGLE AND MULTIPLE
(Continuously Operating Systems)

Floor Area	Bedrooms ^a					
(ft ²)	0-1	2-3	4-5	6-7	>7	
<500	30	40	45	55	60	
500 - 1000	45	55	60	70	75	
1001 - 1500	60	70	75	85	90	
1501 - 2000	75	85	90	100	105	
2001 - 2500	90	100	105	115	120	
2501 - 3000	105	115	120	130	135	
3001 - 3500	120	130	135	145	150	
>3500	135	145	150	160	165	

 Ventilation rates in table are minimum outdoor airflow rates measured in cfm. 2010

DWELLING UNIT		MS					
FLOOR AREA	0 - 1	2 - 3	4 - 5		I		
(square feet)	Airflow in CFM						
< 1,500	30	45	60	75	90		
1,501 - 3,000	45	60	75	90	105		
3,001 - 4,500	60	75	90	105	120		
4,501 - 6,000	75	90	105	120	135		
6,001 - 7,500	90	105	120	135	150		
> 7,500	105	120	135	150	165		

For SI: 1 square foot = 0.0929 m², 1 cubic foot per minute = 0.0004719 m³/s.

the print should be

10.000

American Society of Heating Arthgoreing and Air Conditioning Engineers, Inc. (19) Note that the Air Society Arthgo (19) Note that the Air Society Arthgo

WHOLE HOUSE VENTILATION SYSTEM EFFECTIVENESS

Over- Ventilated (energy and comfort issues)	Under-Vent (multiple issue	tilated es !!)		
400 600 800 1,0	00 1,500 2,	,000+		
	bon Dioxide	Carbon	Dioxide and V	entilation Rate
parts-j	er million (ppm)	Carbon Dioxide (ppm)	Outside Air (cfm/person	IAQ Assumption
		2,400	5 cfm	Unacceptable
		o 1,400	10 cfm	Poor
		1,000	15 cfm	
		800	20 cfm	ASHRAE Standard 62
te set and page 1 and 1 and 1 and		600	25 cfm	Acceptable
11111		400 (and above)	0	Outdoor Air

WHOLE HOUSE VENTILATION SYSTEM EFFECTIVENESS

Exhaust Only Systems

High Performance Ventilation

WHOLE HOUSE VENTILATION SYSTEM EFFECTIVENESS

Central Integrated Supply Systems

Not-So-Common Whole House Ventilation System Types

Benefits of an HRV/ERV

Whole home balanced ventilations systems may help with GOUR VENTION AND A STATES AN HRV/ERVs are a great choice for ventilation HRV/ERVs will not work for distribution of heating and cooling HRV/ERVs must have good duct design

Spot HRV/ERVs can be a great choice for a smaller home

Whole Home HRV/ERVs are a great choice for larger homes

PARTS & PIECES

» Heat Recovery

"Use heat from inside your building to warm up the incoming ventilation air"

WHOLE HOUSE VENTILATION SYSTEM EFFECTIVENESS

Balanced System

WHOLE HOUSE VENTILATION SYSTEM EFFECTIVENESS STUDY

Ventilation Effectiveness Study Final Report

Prepared by: Washington State University Energy Program Ken Eklund Rick Kunkle Adria Banks David Hales 905 Plum Street SE Olympia WA 98504-3165

Northwest Energy Efficiency Alliance PHONE 503-688-5400 FAX 503-688-5447 EMAIL info@mea.org

HTTPS://CONDUITNW.ORG/PAGES/FILE.ASPX?RID=2585

HRV/ERV BEST PRACTICES

HRVs are recommended in the Pacific NW. Any HRV/ERV return air grills near kitchen should have pre-Different cimates may need an ERV to help manage Humfolty too. Alterot ventilation and betwork appointed by the help manage Humfolty too. If you are using any HRV/Ior bathroomse kitchen ventilation, Be sure and have return at pathways in each room make sure you have controls for boost mode supplied by HRV/ERV

Part 3

Case Studies

HVAC DESIGN | HVAC Load Calculations | HVAC Design Protocols | Code Compliance | S

HVAC Design

COOLING & HEATING